首页 > 中考 >

2018中考数学知识点:二次函数与一元二次方程的联系

2020-03-24 03:07:36

  新一轮中考复习备考周期正式开始,中考网为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《2018中考数学知识点:二次函数与一元二次方程的联系》,仅供参考!

  二次函数与一元二次方程的联系     特别地,二次函数(以下称函数)y=ax^2+bx+c,     当y=0时,二次函数为关于x的一元二次方程(以下称方程),     即ax^2+bx+c=0     此时,函数图像与x轴有无交点即方程有无实数根。     函数与x轴交点的横坐标即为方程的根。     1.二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:     解析式     y=ax^2;     y=ax^2+K     y=a(x-h)^2;     y=a(x-h)^2+k     y=ax^2+bx+c     顶点坐标     (0,0)     (0,K)     (h,0)     (h,k)     (-b/2a,4ac-b^2/4a)     对 称 轴     x=0     x=0     x=h     x=h     x=-b/2a     当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到,     当h<0时,则向左平行移动|h|个单位得到.     当h>0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;     当h>0,k<0时,将抛物线y=ax^2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2-k的图象;     当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)?+k的图象;     当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)?+k的图象;在向上或向下.向左或向右平移抛物线时,可以简记为“上加下减,左加右减”。     因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.     2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2;]/4a).     3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.     4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:     (1)图象与y轴一定相交,交点坐标为(0,c);     (2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0     (a≠0)的两根.这两点间的距离AB=|x?-x?| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)     当△=0.图象与x轴只有一个交点;     当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.     5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.     顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.     6.用待定系数法求二次函数的解析式     (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:     y=ax^2+bx+c(a≠0).     (2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).     (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).     7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
考试第一网 Copyright © 2020

本站所有信息整理自互联网,如果侵犯了您的权力,请联系我们删除(cqmuci023@foxmail.com)。