首页 > 中考 >

三角函数诱导公式怎么推导 附记忆口诀

2020-10-16 16:36:04

在中考题目中,三角函数难度不大,拿分比较简单,诱导公式是解决三角函数问题的前提,你都掌握了吗?下面小编整理了三角函数诱导公式推导过程及记忆方法,供大家参考!

三角函数诱导公式怎么推导 附记忆口诀

三角函数常见诱导公式有哪些

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα如果觉得以上内容不够详细,可以点击查看三角函数诱导公式相关文章,了解更多!

三角函数诱导函数记忆口诀

上面这些诱导公式可以概括为:

对于π/2*k ±α(k∈Z)的三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)

然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)

上述的记忆口诀是:

奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α

所在象限的原三角函数值的符号可记忆

水平诱导名不变;符号看象限。

各种三角函数在四个象限的符号如何判断,也可以记住口诀

“一全正;二正弦(余割);三两切;四余弦(正割)”.

考试第一网 Copyright © 2020

本站所有信息整理自互联网,如果侵犯了您的权力,请联系我们删除(cqmuci023@foxmail.com)。